

Best Practices in Pharmaceutical Technology

Filipe Gaspar

Technological Trends in Pharmaceutical Development and Manufacturing

Advanced Tools in Development and Manufacturing

Excellent Development and Manufacturing

Quality by Design at Hovione

Technological Trends in Pharmaceutical Development and Manufacturing

Advanced Tools in Development and Manufacturing

Excellent Development and Manufacturing

Quality by Design at Hovione

Technology Trends in Pharmaceutical Manufacturing

- Smaller volumes (personalized medicines, orphan drugs, niche)
- Higher potency

Technology Trends in Pharmaceutical Manufacturing

- More biopharmaceuticals and associated technology
- More complex drugs requiring more sophisticated technologies

Technology Trends in Pharmaceutical Manufacturing

- Moving into continuous processes (???)
- CROs and CMOs becoming key solution & technology providers
- Eager to introduce new technologies
- Increasing volume of real time operational data
 - generated by highly networked control and analytical technologies
 - ... challenge being its consolidation in differentiating knowledge

Some Key Tools in Pharmaceutical Development and Manufacturing

- Statistical design and analysis
- Process analytical technologies
- Advanced modeling tools
- Risk assessment and management
- Lean 6-Sigma
- Quality by Design
- Big Data / Big Data Analytics

Big Data What is it?

3 Vs: High-volume, high-velocity and high-variety information

It is both a problem and an opportunity:

- The types and volumes of available data are increasing beyond the reach of human understanding
- Efficient use of the data will reduce it to human proportions, and bring an added value to those that have the right tools and techniques to shrink the data

Philip Russom, Big Data Analytics, TDWI best practices report 2011 Thomson Reuters, Big Data and the needs of the Pharma Industry, 2013

Big Data Opportunities for Pharma Industry

- Big Data was firstly introduced in customer-facing functions eg sales & marketing
- Integration of data from R&D, retailers, patient and caregivers is expected to accelerate drug discovery and development
- Sophisticated modelling techiques are key to generate data quickly and consistently
- Driving force is often the pressure to reduce the timeline and huge expense of a typical drug development process

McKinsey, How Big Data can revolutionize pharmaceutical R&D, 2013 Dan Munro, Big Pharma Opens New Chapter On Big Data Collaboration, Forbes 2014 Thomson Reuters, Big Data and the needs of the Pharma Industry, 2013

Big Data Challenges for Pharma Industry

- Adjust organization to enable efficient data collection
- Technology and analytics
 - Upgrade legacy systems
 - Invest in people with the right skills
- Mind-sets
 - Companies do not want to be the first mover, since there are few examples of success
 - Large companies should learn from smaller ones that are the early adopters of Big Data
 - Collaborate internally and externally, eg CROs, CMOs and academia

McKinsey, How Big Data can revolutionize pharmaceutical R&D, 2013

Technological Trends in Pharmaceutical Development and Manufacturing

Advanced Tools in Development and Manufacturing

Excellent Development and Manufacturing

Quality by Design at Hovione

Advanced Tools at Development and Manufacturing

DEVELOPMENT

- Risk Assessment
- Design of Experiments
- Modeling Tools
- Scale-Up Methods
- Scale-Down / Miniaturization
- Process Analytics
- Multi Variate Analysis

MANUFACTURING

- Lean 6 Sigma
- Visual Stream Mapping
- Statistical Evaluation
- Failure Mode Effective Analysis
- 8 D
- Poka-Yoke
 - 5 S, OEE

Design of Experiments

Confidential Hovione © 2014

Modeling Tools Adjust model complexity

Best modeling approach: considering the problem statement, "keep things as simple as possible, but not simpler"

Hovione (#)

Modeling Tools Case-studies: Chemical synthesis

Problem statement (routine)

• Solubility curve determination is key to determine the best crystallization conditions.

• However, the procedure takes weeks of experimental work, representing a burden (time and resources).

Approach

• Easy-of-use / **fast solution** tool, capable of reducing the amount of experimental work (Dynochem).

Mechanistic

- 1 solubility point for each pure solvent / anti-solvent
- 1 solubility point with a mixture of solvent / anti-solvent
- 2 different temperatures for each of the previous;

1 model:
$$\frac{d \ln(x_A)}{dT} = \frac{H_A(solid) - H_A(liquid)}{RT^2} = \frac{\Delta H_B(fusion)}{RT^2}$$

- Above procedure enables calibration / extrapolation
 - With only 8 experiments, full curve estimated!

Hovione (#)

Modeling Tools Case-studies: Chemical synthesis

Problem statement (troubleshooting)

• During an alkylation reaction, the content of raw material increased after IPC (upon scale-up).

• Hypothesis: poor mixing leading to un-reacted raw material accumulation; detailed analysis needed.

Approach

• Axial & radial mixing profiles should be compared in detail for the lab and commercial-scale reactors.

- For the 2000 L reactor, ~ zero velocity (stagnant fluid) is observed in the region below the impeller.
- Stirrer was re-designed; problem was solved.

Modeling Tools Case-studies: Particle engineering

How to predict particle size?

Confidential Hovione © 2014

Modeling Tools Case-studies: Particle engineering #1

Modeling Tools Case-studies: Particle engineering #2

Scale-Up Method

GIL M., VICENTE J., GASPAR F.; Spray Drying in the Pharmaceutical Industry Scale-Up Methodology; Chemistry Today, Jul/Aug 2010

Scale-Down Approach

Commercial unit

tap density = 0.40 g/ml solvent = 5% w/w

Process Analytics for Chemical Processes

Confidential Hovione © 2014

Process Analytics

A reflectance probe can be used to characterize the resulting material

NIR technology allows the monitoring of more than one attribute using only one sensor

Process Analytics Technologies Toolbox

		Currently available PAT Technologies					Under development				
		Near Infrared Spectroscopy	Turbidimetry	Refractometry	Viscometry	Focused Beam Reflectance Measurement	Ultra Violet Photometry	Laser Diffraction	Mass Spectroscopy	Mid Infrared Spectroscopy	Raman Spectroscopy
ations	Dispensing	✓									\checkmark
	Dissolution	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark
	Suspension Prep.	\checkmark	\checkmark		\checkmark	\checkmark				✓	\checkmark
	Distillation	\checkmark		\checkmark						✓	\checkmark
ber	Reaction	\checkmark								✓	\checkmark
nit o	Crystallization	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark
ss ur	Column Purification			✓			✓			✓	\checkmark
oce	Wet-milling					✓				\checkmark	\checkmark
Рг	Jet-milling							\checkmark			\checkmark
	Spray-Drying					✓		✓			\checkmark
	Drying	\checkmark							\checkmark		\checkmark
ب	-										1
Process Development Steps	Familiarization									✓	✓
	Industrialization	✓	\checkmark	\checkmark	\checkmark	✓		✓	\checkmark	✓	\checkmark
	Scale-Up	✓	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
	Commercial Mnfg Start-Up	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark
	Commercial Routine Mnfg	✓	\checkmark	✓	\checkmark	✓	✓	\checkmark	\checkmark	~	\checkmark
	Continuous Improvement	\checkmark				\checkmark			\checkmark	\checkmark	\checkmark

Multivariate Analysis

Variability in process inputs translates into variability in the final product How are the process outputs affected by the inputs?

What variables and combination of variables affect the process outputs more significantly?

Hovione

Examples: Multivariate Analysis

Multi Variate Analysis PCA for Raw Material Dispensing by NIR

NIR may reveal variability between **suppliers** which may impact downstream Accounting such variability will allow for a better control strategy

Confidential Hovione © 2014

Multivariate Data Analysis The PLS - Real Example

Hovione 🌐

Confidential Hovione © 2014

Multivariate Data Analysis The PLS - Regression

Raw materials

NIR spectra; HPLC; Water content

Reactions

Temp./pressure profiles

Intermediates HPLC

Downstream

Temperatures/pH

Intermediates HPLC

Partial Least Squares Regression

Final product

- Impurities
- Particle size distribution
- Accumulated yield

RMSEE = 1.300

Multivariate Data Analysis PLS - The Results

Prediction of variability leads to process knowledge

Model coefficients allows identification of critical variables and how to change them for improvement:

Amount of catalyst was changed;

Average yield improvement of ~1.5%

Statistical Process Control

Goal: Assure the continuous trending of the process (capability improvement) **Example:** Control Charts

Statistical Process Control – Control Chart

Hovione 🌐

Confidential Hovione © 2014

VSM – Visual Stream Mapping How to use it?

- VSM
 - Is a simple and visually comprehensive tool very useful for the kick off of any project (is used in every Lean 6 Sigma project)
 - It helps the team to focus on more important (higher return) aspects

What is FMEA?

- FMEA is normally used during development stages to reduce risk before implementation
- Based on 3 important concepts
 - Failures
 - Effects
 - Detection

FMEA key words

Failure: Potential (or real) evidence of the occurrence of an anomaly in the process/ product due to one or more reasons to be identified

Effect: Is a consequence of a failure which will be later detected (by operator, QC or Customer)

How to use FMEA?

• FMEA Criteria table

	Probability of occurence (P) / Frequency (F)		Severity (S)	Detection (D)		
1	> 5 years	1 in 10,000	None	Extremely likely	Detection on > 99% of cases	
2	2 - 5 years	1 in 1,000	Very minor		Detection on > 90% of cases	
3	1 - 2 years	1 in 500	Minor	Highly likely	Detection on > 75% of cases	
4	Once a year	1 in 100	Very low		Detection on > 60% of cases	
5	6 - 12 months	1 in 50	Low		Detection on > 50% of cases	
6	3 - 6 months	1 in 20	Moderate	Likely	Detection on > 40% of cases	
7	Once a month	1 in 10	High		Detection on > 30% of cases	
8	Once a week	1 in 5	Very high		Detection on < 30% of cases	
9	2 - 4 days	1 in 3	Extremely high	Unlikely	Detection on < 20% of cases	
10	Every day	1 in 2	Catastrophic		Detection on < 10% of cases	

Linking to Sponsor Data/Knowledge Sharing

Hovione

Confidential Hovione © 2014

Advanced Tools at Development and Manufacturing

DEVELOPMENT

- Risk Assessment
- Design of Experiments
- Modeling Tools
- Scale-Up Methods
- Scale-Down / Miniaturization
- Process Analytics
- Multi Variate Analysis

MANUFACTURING

- Lean 6 Sigma
- Visual Stream Mapping
- <u>Statistical Evaluation</u>
- <u>Failure Mode Effective Analysis</u>
- 8 D
- Poka-Yoke
 - 5 S, OEE

Hovione

Technological Trends in Pharmaceutical Development and Manufacturing

Advanced Tools in Development and Manufacturing

Excellent Development and Manufacturing

Quality by Design at Hovione

New approach at Hovione: Bridging the gap

- Established methodologies: Britest, QbD, Lean
- State-of-the-Art tools
- Throughout project Life-cycle
- Site independent
- Accessible by everyone
- Aligned with regulators (FDA & EMA)

Hovione (#)

Excellent Development and Manufacture Guideline

Technological Trends in Pharmaceutical Development and Manufacturing

Advanced Tools in Development and Manufacturing

Excellent Development and Manufacturing

Quality by Design at Hovione

Hovione and Quality by Design

QbD is moving on...but slower than anticipated

2008

Not started / Ideas & Vision

Road map development

Enrolled participants / initial implementation

Rolled out across the organization

Kane, Quality by Design: A Contract Organization Perspective, DCAT Week 14, Mar. 2014

Hovione 🕽

Confidential Hovione © 2014

Understanding Challenges to Quality by Design

"Achieving the 21st Century Quality vision will require a transformative journey for the industry that demands a significant shift in its development process."

"This transformation has not taken place due to challenges within <u>companies</u>, within the FDA, as well as the <u>international regulatory community</u>."

December 2009

Understanding Challenges to Quality by Design

Different implementation phases at Regulators Different levels of comfort with QbD concepts Launch of products in multiple markets

Submissions under QbD are often

- replaced by "enhanced traditional approach" or
- complemented with "traditional" submissions/validation

QbD at Hovione A lifecycle perspective

QbD at Hovione Science and Risk based

QbD at Hovione Knowledge Management

QbD at Hovione Knowledge Management - Data

Hovione 🌐

Confidential Hovione © 2014

QbD at Hovione Knowledge Management - Data

Confidential Hovione © 2014

Wisdom Model Knowledge

Knowledge Management - Model

QbD at Hovione

Information

Data

Describe/represent systems

CQA definition

Predict large scale needs Assess impact and probability

Quality and performance metrics

Risk assessment I (rank process parameters)

Process Development (statistical, mechanistic)

(process FMEA)

PAT Strategy

Hovione (#)

strategy

What changes did QbD bring to Hovione?

- Structured approach to process development and continuous improvement
- Stronger science & process understanding
- State-of-the-art risk evaluation and mitigation tools
- New metrics to manufacturing: process robustness, RPN
- Higher state of control => less failures
- Leaner development through effective knowledge management

Case-study: Traditional vs. Quality by Design Introduction

From our products portfolio, two processes were chosen for comparison

- Both spray drying processes at the same scale and equivalent equipment trains
- Both are commercial products with more than 70 batches produced
- One followed a traditional approach, the other a QbD based approach

Restrospective analysis to evaluate the following:

- Process performance
- Quality
- Continuous improvement
- Supply chain reliability
- Cost

Benchmarking: Process Performance

Indicator: Yield percentage relative to theoretical yield

Traditional	QbD		
95 ± 2 %	97 ± 1 %		

Process developed under QbD shows higher and more consistent yield.

During process development, process performance as measured by yield was also targeted

Better yield in QbD based process results from a better state of control and is also an outcome of the continuous improvement program.

Benchmarking: Quality

Indicators: Number of deviations per batch, and Process Capability index for CQAs

	Traditional	QbD
# Deviations per batch	0.7	0.3
Average Cpk	1.1 (~3σ)	2.0 (6σ)
Minimum Cpk	0.7	1.2

Deviations related with process control and yield were considered

Average process capability index (Cpk) takes into account all CQAs identified for each product

Higher consistency in targeting the specification/design space, and in targeting the desired NOR

Benchmarking: Continuous Improvement

Indicator: Number of batches needed for a process improvement

Traditional	QbD
42	9

Knowledge gained during process development is the starting point for the continuous improvement; multivariate analysis may fill the gaps using commercial data.

Continuous improvement programs are part of a successful QbD approach. In their absence improvements are mainly reactive.

• Facilitated by body of knowledge and built-in regulatory flexibility.

Benchmarking: Supply Chain Reliability

Indicators: right first time, delivery against plan, risk value

	Traditional	QbD
% batches right first time	95%	100%
% deliveries according to plan	91%	100%
Average RPN (action limit: 100)	79	48
Average # RPN above 100	22	1

Supply chain reliability can be inferred by:

- Batches produced within spec
- Batches delivered to the sponsor within the planned date.
- Average RPN and number of RPN above 100.

Higher state of control reduces failure and process cycle-time variability.

Benchmarking: Traditional vs. QbD

Effective Knowledge Management

	1 st QbD filling	2 nd QbD filling	Today
# Runs at full scale	~ 270	~ 60	~ 9
Material needed	~ 900 kg (~ \$ 9 MM*)	~ 200 kg (~ \$ 2 MM*)	~ 40 kg (~ \$0.4 MM*)
Days at full scale	~ 4 months	~ 4 weeks	~ 4 days

* Assumed \$10,000/kg of as reference

Thank you for your attention.

Filipe Gaspar, Particle Engineering Services fgaspar@hovione.com

hovione.com